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Abstract 

Simple formulations are described for evaluating 
overall anisotropy of the kind sometimes found in 
diffraction from crystals of macromolecules. The 
models correspond to whole-body anisotropic vibra- 
tion of unit cells or of asymmetric macromolecular 
units that internally also undergo'local isotropic 
atomic motions. These procedures have been imple- 
mented in programs that (1) use the structure-factor 
components from individual molecules to evaluate 
the anisotropy, (2) use existing Fc data to determine 
anisotropic parameters for the unit cell, and (3) use 
expected intensity values from unit-cell contents for 
unknown structures. The methods have been applied 
in refinement of the structures of myohemerythrin 
and other proteins and this led to improved R values 
and more readily interpreted difference maps. 

Introduction 
It occasionally happens that diffraction from a 
molecular crystal is appreciably anisotropic in its 
overall dependence on scattering angle. Such 
anisotropy is sometimes of sufficient magnitude that 
the limiting extent of measurable data differs in 
different directions. Examples from macromolecular 
crystallography include the nucleOsome core particle 
where diffraction extends to about 5, 6 and 8/~, 
spacings along orthogonal axes (Finch, Brown, 
Rhodes, Richmond, Rushton, Lutter & Klug, 1981), 
a bacteriophage 434 repressor-ol~erator complex 
where the data extend to about 3 A spacings in the 
directions of protein-DNA rods whereas the limit is 
about 4 ,~ in other directions (Anderson, Ptashne & 
Harrison, 1984), a ~/~ resolvase crystal that diffracts 
to 4 A along the hexagonal axis of the lattice but only 
to 7 A in perpendicular directions (Abdel-Meguid, 
Grindly, Templeton & Steitz, 1984) and, from our 
own work, myohemerythrin for which data were 
measurable to a limit of 1.3/~ along an axis that 
parallels the a helices of the structure as compared 
with a limit of 1.7/~ spacings orthogonally where 
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lattice contacts are sparse. Even when the limits of 
diffraction are not encountered in an experiment, 
significant departures from overall isotropy can some- 
times be detected. 

In the case of small molecules where data extend 
to high angles, any overall anisotropy that exists is 
naturally included in the individual anisotropic tem- 
perature parameters of the refined atomic model. On 
the other hand, limitations in the extent of diffraction 
from macromolecules often dictate that such crystal 
structures be refined isotropically in order to preserve 
a favorable observation-to-parameter ratio. If sub- 
stantial overall anisotropy is present, the isotropic 
model will necessarily be inadequate near the diffrac- 
tion limit. However, a simple description of this gen- 
eral anisotropy can appreciably improve the agree- 
ment between observation and calculation. In addi- 
tion to its impact on refinement, this description gives 
information about the anisotropic motion of 
molecules in the lattice and it might also be useful 
in other aspects of crystallographic analysis. We pres- 
ent here a description of overall anisotropy and pro- 
vide procedures for evaluating its parameters. The 
methods have been tested with data from crystals of 
myohemerythrin and other proteins. 

Theoretical formulation 

There are many possible causes for overall anisotropy 
in diffraction, and a mathematical description of the 
effect will depend on the particular physical basis. 
Our main objective here is a simple formulation that 
captures the essential features of the observations. 
This can be achieved with an overall anisotropic 
increment in thermal parameters. Such a model corre- 
sponds to ascribing a whole-body anisotropic vibra- 
tion to macromolecular units that internally also 
undergo local isotropic atomic motion. 

The structure factor F for a model with overall 
anisotropy applied to individual asymmetric units is 
given by 

N N a 
F(h) = E • fj(s) exp (-Bjs 2) 

k = l j = l  

x exp (27rib. xj, k) exp (--hT&13kh). (1) 

Here h(h, k, l) is the vector of reciprocal-lattice 
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indices; s = sin (0)/h; fj, Bj and xj(x, y, z) are respec- 
tively the atomic scattering factor, isotropic thermal 
parameter and fractional atomic position vector for 
the j th of Na atoms in the asymmetric unit; and Xj, k 
and Z~13k refer to the atomic coordinates and overall 
thermal-parameter increments for the kth of Ns sym- 
metry equivalents. If the symmetry operation that 
relates coordinates of the kth unit to those of the 
fundamental unit, Xj.o, is given by 

Xj, k = Sk Xj, o + tk, 

then the incremental thermal ellipsoid as oriented in 
the kth unit is 

a l ~ k  = Sk~13oS[ 
in relation to the ellipsoid of the fundamental unit, 
• 13o. The symmetry operators of rotation Sk and 
translation tk are normally those of the particular 
space group, but these could also be extended to 
include non-crystallographic symmetry. 

It may happen that one cannot readily ascertain 
the orientation of the thermal ellipsoid of the 
macromolecular asymmetric unit. In this event it is 
useful to consider an overall anisotropic motion of 
the entire unit cell in the lattice. The structure factor 
for this model of whole-cell anisotropy is 

IF(h)l = lG(h)l exp (-hrAI3h) (2) 

where G(h) is the isotropic structure factor: 

G(h)= E E f~(s )exp(-Bjs2)exp(27r ih .x j ,  k). 
k = l  j = l  

The anisotropic parameter in this case is denoted by 
~13 since it corresponds to the orientational average 
of all symmetry equivalents. This formulation 
obviously applies to the situation where structure 
factors from an isotropic model are to be compared 
with observations that might include anisotropy. 

It can also be useful to evaluate anisotropy at a 
stage when an atomic model is not yet available. 
Provided that the contents of the asymmetric unit are 
known, the anisotropy in this case can be expressed 
a s  

F(h) 2 = E(h) exp ( -2hr~h)  (3) 

where the expected value for the squared structure- 
factor modulus (normalized intensity) in the absence 
of atomic displacements (Wilson, 1942) is given by 

N a 

E(h)=  Ns E f](s) .  
j = l  

Here the overall anisotropic temperature parameter 
also incorporates the isotropic component and, as for 
(2), these parameters are averages that pertain to the 
whole unit cell. Thus, there are restrictions on the 
elements of these thermal-parameter tensors, z$13 and m 

13, that reflect the point symmetry of the Laue group 
(Prince, 1982). 

Computational aspects 

While it is convenient for diffraction calculations to 
express anisotropic thermal parameters in the form 
of the dimensionless 13's, as above, these measures 
obscure the physical meaning. The isotropic param- 
eters are directly related to mean-square atomic dis- 
placements, B = 8~r2u --~, and thus it is useful to express 
the anisotropic parameters on the same scale. The 
correspondence of elements in a 13 representation to 

1 _ ~ / ~  those in a B representation is ~ i j  "---4t~i Uj  ui j  where B 
is in a general, possibly non-orthogonal, coordinate 
frame and a* is the length of a reciprocal-lattice edge. 
Thus, the exponent of anisotropy in (1) expands to 

hTA~h = 1( bl l a*2 h 2 + 2 b12a * b * hk + 2 b13 a * c* hl 

+ bEEb*Ek2+2b23b*c*kl+ b33c'212). (4) 

We have developed three computer programs to 
evaluate overall anisotropy in macromolecular crys- 
tals. Each finds the least-squares fit of the elements 
of the anisotropic tensor to the observed structure- 
factor moduli IFo. One program compares the Fo[ 2 
data to expected values given by (3). A second pro- 
gram implements (2) to bring the [Fc[ values calcu- 
lated from an isotropic model into optimal agreement 
with anisotropic Fo observations. In both of these 
programs, symmetry restrictions on tensor elements 
must be taken into account (e.g. b12 = b 2 3 = 0  for 
monoclinic; bll = b22 and b13 -- b23 = 0 for tetragonal 
Laue group 4). The third program treats the more 
general case given by (1). This analysis requires that 
the separate real and imaginary components, A and 
B, be available for each symmetry element. Thus, for 
this case it was also necessary to modify the restrained 
refinement program PROLSQ (Hendrickson & Kon- 
nert, 1980; Hendrickson, 1985) to provide input for 
the least-squares evaluation and to apply the resulting 
anisotropic factor in succeeding cycles of refinement. 
Typically, we re-evaluate the anisotropy every few 
cycles. 

Although the formulations given by (1) and (2) 
correspond to a physical model that has whole-body 
anisotropic motion superimposed on isotropic inter- 
nal vibrations of individual atoms, the data from 
typical experiments do not suffice to distinguish these 
effects completely. The distinction between the 
average of isotropic B values and the average 
anisotropic level (from the trace of z~13) is arbitrary. 
In our computations, the separation is set by the 
average B in the isotropic refinement preceding the 
anisotropic fitting. 

Applications 

The analysis of overall anisotropy presented here was 
motivated by our need to account for anisotropy in 
diffraction from myohemerythrin crystals during 
refinement of the structure. Myohemerythrin from the 
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sipunculan worm Themiste zostericola crystallizes 
from ammonium sulfate in space group P2~212~ with 
a=41.66,  b=80.17 and c=37.82/~.  The structure 
was initially determined by multiple isomorphous 
replacement at 5.5 A, resolution (Hendrickson, Klip- 
penstein & Ward, 1975) and this result was extended 
to 2.8 A~ resolution by model-resolved anomalous 
phasing. During data collection for a high-resolution 
analysis we noticed that whereas data in the direction 
of b* could be measured to 1.3 A, spacings, in the 
perpendicular directions (a 'c* plane) diffracted 
intensities had already fallen to this level for reflec- 
tions corresponding to 1.7 A, spacings. Consequently, 
data measurements were restricted to an ellipsoid of 
reciprocal space specified by semi-axes of (1/1.7) A,- 
along a* and c* and by (1/1.3) A, -~ along b*. 

Initially, we attempted to account for the 
myohemerythrin anisotropy by 'correcting' the 
observed data. The new 3.0-1.7/1.3 A, data set was 
scaled to the existing 00-2.8 A, set by a factor of 
exp {~[6.6(a*2h2 + C'212)]}.  These corrected data were 
then.used in the early stages of refinement. A later 
analysis of another data set (m-2 A,) showed that the 
m-2.8 A data set could not be isotropic as had been 
assumed, and this provoked the analysis described 
here. Structure factors calculated from a model that 
had been refined against the corrected data were 
compared against uncorrected measurements to 
deduce overall anisotropic parameters. The results 
are shown in Table 1. 

All three procedures that we have presented for 
describing overall anisotropy produced similar values 
for myohemerythrin. This model of anisotropy 
appreciably improved the agreement factor from R = 
0.23 to R=0.16 .  Relative to the b* direction the 
thermal parameters are large along a* and c*, and 
the molecular ellipsoid is nearly aligned with the 
crystal axes. This behavior is consistent with two 
aspects of the structure that are illustrated in Fig. 1 
which shows a projection of the a-carbon backbone 
down the b axis onto the xz plane. Firstly, there are 
very few lateral lattice contacts of a unique molecule 
with its neighbors whereas molecules at +0.5 in y 
(not shown for clarity) make several contacts with 
the central molecular. Moreover, nearly all of the 
lateral contacts that do exist involve the relatively 
mobile N-terminal arm. Secondly, the four-helix 
bundle of myohemerythrin is aligned along the b axis. 
It may be that the normal modes of myohemerythrin 
permit larger-scale displacements of the helices 
laterally with respect to one another than of residues 
axially within the helices. 

We have also evaluated anisotropy in protein crys- 
tals for which there is no striking differential fall off 
in diffracted intensity. Results from applying the pro- 
gram that implements (2) to compare Fo with Fc have 
led, in these cases, to some improvement in R (0.001 
to 0.007) with anisotropic AI3 elements of 2 A, 2 or 

Table 1. Overall anisotropic thermal parameters (/~2) 
for myohemerythrin 

Formulation Formulation Formulation 
(3) (F)  (2) F c (1) Ac, B~ 

B a¢ aft 
btt 23"5 5"8 5"8 
bl 2 __ w -0"7 
b13 - -  - -  0"5 
b22 13"1 -9"0 -9"0 
b23 - -  w --0"5 
b33 20.8 3.3 3"3 
Average Bis  o - -  2 2 . 9  2 2 . 9  

R (anisotropic) 0-424 0-164 0-163 
Isotropic B 18.4 -1.1 -1-1 
R(isotropic) 0-447 0.230 0-230 

The data used in these fittings included all reflections greater than 2tr t and 
ranged from 10 to 1.3 ,~ in Bragg spacings. Least-squares fittings were made 
to each of the formulations of overall anisotropy as described in the text. 
Respectively, these fitted the expected structure-factor moduli (F), isotropic 
calculated structure factors Fc, and the structure-factor contributions Ac 
and Be of the asymmetric units to the observed diffraction data. Structure 
factors for these fittings were calculated after refinement cycle XVIII.3. 
Thermal parameters are given in B values that relate to the respective /3 
values according to (4). The average Biso cited here pertains to protein atoms 
only. The isotropic B and associated R value were calculated to provide a 
basis for comparing the improvement in the model which would not be 
biased by the current average B. 

less. In the case of bovine pancreatic trypsin inhibitor, 
values of bll = -1 .69 ,  b22= 2.05 and b33 = - 0 . 2 6  A, 2 
were obtained for the isotropic model from the 
refinement reported by Yu, Karplus & Hendrickson 
(1985), and this reduced R from 0.152 to 0.145. The 
improved agreement in this application of overall 
anisotropy compares favorably with an R of 0-143 
obtained in the individual three-parameter 
anisotropic model (Yu et al., 1985). In the case of 
erabutoxin (Smith, Corfield, Hendrickson & Low, 
1987), R was reduced from 0.163 to 0.159 with b,,, b22 

z 

Fig. I. Projection onto the x z  plane of  neighboring molecules in 
P21212 ~ crystals of myohemerythrin. The schematic diagram for 
myohemerythrin is the a-carbon connectivity. For clarity 
molecules at y + 0.5 above and below the central unit were not 
drawn. Notice the absence of  interactions between the central 
molecule and those in the lower-right-hand corner. 
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and b33 of -1"54, 0"62 and 0-92 A 2 respectiveiy (final 
values were -1 .42,  0.39 and 1.03/~2). Treatment of 
anisotropy in this way made difference maps less 
noisy and this facilitated the further interpretation of 
the structure. 
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port for this work through grant PCM84-09658. 

References 

ABDEL-MEGUID, S. S., GRINDLY, N. D. F., TEMPLETON, N. S. 
& STEITZ, T. A. (1984). Proc. NatlAcad. Sci. USA, 81, 2001-2005. 

ANDERSON, J., PTASHNE, M. & HARRISON, S. C. (1984). Proc. 
Natl Acad. Sci. USA, 81, 1307-1311. 

FINCH, J. T., BROWN, R. S., RHODES, D., RICHMOND, T., RUSH- 
TON, B., LUTTER, L. C. & KLUG, A. (1981). J. Mol. Biol. 145, 
757-769. 

HENDRICKSON, W. A. (1985). Methods in Enzymol. 115, 252-270. 
HENDRICKSON, W. A., KLIPPENSTEIN, G. L. & WARD, K. B. 

(1975). Proc. Natl Acad. Sci. USA, 72, 2160-2164. 
HENDRICKSON, W. A. & KONNERT, J. H. (1980). Computing in 

Crystallography, edited by IL DIAMOND, S. RAMASASHAN & 
K. VENKATESAN, pp. 13.01-13.23. Bangalore: Indian Academy 
of Sciences. 

PRINCE, E. (1982). Mathematical Techniques in Crystallography 
and Materials Science, p. 65. New York: Springer-Verlag. 

SMITH, J. L., CORFIELD, P. W. R., HENDRICKSON, W. A. & 
Low, B. W. (1987). In preparation. 

WILSON, A. J. C. (1942). Nature (London), 150, 152. 
Yu, H.-A., KARPLUS, M. & HENDRICKSON, W. A. (1985). Acta 

Cryst. B41, 191-201. 

Acta Cryst. (1987). A43, 121-125 

General Density Function Corresponding to X-ray Diffraction 
with Anomalous Scattering Included 

B y  WAYNE A. HENDRICKSON AND STEVEN SHERIFF* 

Department of  Biochemistry and Molecular Biophysics, Columbia University, New York, N Y  10032, USA, and 
Laboratory for the Structure of  Matter, Naval Research Laboratory, Washington, DC 20375, USA 

(Received 28 April 1986; accepted 12 August 1986) 

Abstract 

The generalized density function that is the Fourier 
transform of X-ray diffraction as observed when 
anomalous scattering occurs is described. This is a 
complex function in contrast to the purely real elec- 
tron-density function that pertains when only the 
'normal '  Thomson scattering component is present. 
The imaginary component of this general density 
function produces an image of the anomalous scatter- 
ing centers and is more accurate than the Kraut 
approximation commonly used in macromolecular 
crystallography to produce such images. 

Introduction 

The Fourier transform of the electron-density distri- 
bution in an atom yields the normal atomic scattering 
factor for X-rays. Conversely, a Fourier synthesis of 
the structure factors from a crystal composed of such 
normal scatterers gives back the true electron-density 
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function, p(x). This 'normal '  situation pertains if the 
scattering from each point is directly proportional to 
that from a free electron. In reality, the scattering 
process can involve resonance with the natural 
frequencies of bound electrons and this leads to addi- 
tional phase-shifted contributions - the anomalous 
scattering (James, 1948). A Fourier synthesis of the 
structure factors from a crystal that includes 
anomalous scatterers does not produce the true elec- 
tron-density distribution, which is real and non-nega- 
tive, but by analogy we can define a general density 
function, p*(x), as the Fourier transform of the actual 
X-ray diffraction rather than just the normal scatter- 
ing component. This function is complex and the 
imaginary component depends only on the anom- 
alous scattering centers. The Bijvoet-difference 
Fourier synthesis proposed by Kraut (1968), a func- 
tion which has proved useful in macromolecular 
crystallography, is an approximation of the true 
imaginary component (Chacko & Srinivasan, 1970). 
In this paper we examine the properties of the general 
density function, test approximations with simulated 
diffracted data, and discuss applications with experi- 
mental data. 
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